Графен закладывает основы энергогенерации без ископаемого топлива

Знания о графене, как источнике получения энергии, расширяются, и прикладное использование его в энергогенерирующих системах не за горами. Тот факт, что графен способен вырабатывать электрический ток с помощью окружающей среды, случайно обнаружили физики Университета Арканзаса (США), и не случайно его использовали для создания инновационного источника генерации постоянного тока ученые и инженеры научно-исследовательской немецко-американской компании Neutrino Energy Group.

Оказалось, что графен (двумерная аллотропная модификация углерода, образованная слоем атомов углерода толщиной в один атом. Атомы углерода находятся в sp²-гибридизации и соединены посредством σ- и π-связей в гексагональную двумерную кристаллическую решетку), не могут существовать в 2D-плоскости.

Чтобы существовать отдельно друг от друга, графен должен вести себя как трехмерный материал для обеспечения необходимой стабильности. Оказалось, что «лазейкой» является смещение подвижных атомов, что и придает графену свойства третьего измерения. Иными словами, графен никогда не был 100 % плоским — он вибрировал на атомарном уровне так, чтобы его соединения не подвергались спонтанному распаду. Группа физиков Манчестерского университета под руководством Пола Тибадо доказала, что дело в так называемых «полетах Леви» — шаблонах небольших случайных колебаний, сочетающихся с внезапными, резкими сдвигами. В атомном масштабе физики видели их впервые. Измеряя скорость и масштаб этих графеновых волн, Тибадо предположил, что их можно использовать для извлечения энергии из окружающей среды.

Разместив электроды с обеих сторон секции такого графена, был получен крошечный генератор. Согласно расчетам, графен размером 10х10 микрон обладает мощностью в 10 микроватт. Это немного для прикладного использования такого эффекта. Однако ученые Манчестерского университета зафиксировали и подтвердили сам факт возможности получения электрического тока на единичном слое графена.

Для оценки технологической возможности использования графена в целях получения энергии из окружающего пространства очень важно оценивать силу взаимодействий между электронами в структуре, называемой витым двухслойным графеном, которая создается путем корректировки непосредственного окружения, что является главным достижением для перестраиваемой электронной квантовой материи. В 2018 году было обнаружено, что структура, известная как двухслойный графен с закрученным магическим углом (MATBG), имеет узкую полосу энергии электронов, в которой особенно важны электронные взаимодействия. MATBG принадлежит к исключительной группе материальных платформ, в которых плотность электронов может быть настроена для переключения между изолирующим и сверхпроводящим состояниями. В статье «Nature» Степанов и др. и Arora и др. сообщают, что сила взаимодействия электронов в MATBG может быть настроена при фиксированной электронной плотности с помощью специальной конструкции диэлектрической (изолирующей) среды.

В большинстве слоистых проводящих материалов электронная плотность является единственным параметром, который может быть настроен экспериментально для изменения силы взаимодействия. Степанов и др. и Arora и др. показали, что сила взаимодействия электронов в MATBG может быть настроена при фиксированной электронной плотности. MATBG включает в себя два слоя графена (двумерные листы атомов углерода), которые уложены друг на друга с помощью шестиугольных решеток, повернутых без совмещения на угол около 1,1°. Атомы образуют периодическую структуру, называемую муаровой структурой, в которой пространственная протяженность элементарной ячейки (наименьшей повторяющейся единицы) и, следовательно, электронных орбиталей, связанных с узкой энергетической зоной электронов, составляет не более 15 нм. Поскольку эти орбитали намного больше, чем в обычных электронных материалах, диэлектрическая среда MATBG может сильно влиять на электронное экранирование и, следовательно, на электронные взаимодействия.

Читайте по теме. Из графена разработали эффективную гелиотермальную пленку

techcult.ru

Facebook Comments
Print Friendly, PDF & Email