Графен закладывает основы энергогенерации без ископаемого топлива

Знания о графене, как источнике получения энергии, расширяются, и прикладное использование его в энергогенерирующих системах не за горами. Тот факт, что графен способен вырабатывать электрический ток с помощью окружающей среды, случайно обнаружили физики Университета Арканзаса (США), и не случайно его использовали для создания инновационного источника генерации постоянного тока ученые и инженеры научно-исследовательской немецко-американской компании Neutrino Energy Group.

Оказалось, что графен (двумерная аллотропная модификация углерода, образованная слоем атомов углерода толщиной в один атом. Атомы углерода находятся в sp²-гибридизации и соединены посредством σ- и π-связей в гексагональную двумерную кристаллическую решетку), не могут существовать в 2D-плоскости.

Чтобы существовать отдельно друг от друга, графен должен вести себя как трехмерный материал для обеспечения необходимой стабильности. Оказалось, что «лазейкой» является смещение подвижных атомов, что и придает графену свойства третьего измерения. Иными словами, графен никогда не был 100 % плоским — он вибрировал на атомарном уровне так, чтобы его соединения не подвергались спонтанному распаду. Группа физиков Манчестерского университета под руководством Пола Тибадо доказала, что дело в так называемых «полетах Леви» — шаблонах небольших случайных колебаний, сочетающихся с внезапными, резкими сдвигами. В атомном масштабе физики видели их впервые. Измеряя скорость и масштаб этих графеновых волн, Тибадо предположил, что их можно использовать для извлечения энергии из окружающей среды.

Разместив электроды с обеих сторон секции такого графена, был получен крошечный генератор. Согласно расчетам, графен размером 10х10 микрон обладает мощностью в 10 микроватт. Это немного для прикладного использования такого эффекта. Однако ученые Манчестерского университета зафиксировали и подтвердили сам факт возможности получения электрического тока на единичном слое графена.

Для оценки технологической возможности использования графена в целях получения энергии из окружающего пространства очень важно оценивать силу взаимодействий между электронами в структуре, называемой витым двухслойным графеном, которая создается путем корректировки непосредственного окружения, что является главным достижением для перестраиваемой электронной квантовой материи. В 2018 году было обнаружено, что структура, известная как двухслойный графен с закрученным магическим углом (MATBG), имеет узкую полосу энергии электронов, в которой особенно важны электронные взаимодействия. MATBG принадлежит к исключительной группе материальных платформ, в которых плотность электронов может быть настроена для переключения между изолирующим и сверхпроводящим состояниями. В статье «Nature» Степанов и др. и Arora и др. сообщают, что сила взаимодействия электронов в MATBG может быть настроена при фиксированной электронной плотности с помощью специальной конструкции диэлектрической (изолирующей) среды.

В большинстве слоистых проводящих материалов электронная плотность является единственным параметром, который может быть настроен экспериментально для изменения силы взаимодействия. Степанов и др. и Arora и др. показали, что сила взаимодействия электронов в MATBG может быть настроена при фиксированной электронной плотности. MATBG включает в себя два слоя графена (двумерные листы атомов углерода), которые уложены друг на друга с помощью шестиугольных решеток, повернутых без совмещения на угол около 1,1°. Атомы образуют периодическую структуру, называемую муаровой структурой, в которой пространственная протяженность элементарной ячейки (наименьшей повторяющейся единицы) и, следовательно, электронных орбиталей, связанных с узкой энергетической зоной электронов, составляет не более 15 нм. Поскольку эти орбитали намного больше, чем в обычных электронных материалах, диэлектрическая среда MATBG может сильно влиять на электронное экранирование и, следовательно, на электронные взаимодействия.

Читайте по теме. Из графена разработали эффективную гелиотермальную пленку

techcult.ru

Facebook Comments